For Sale: House that Makes an Income!

As followers of this blog will know, we at Endeavour have spent a lot of time on our Canada’s Greenest Home project. Our goal was to make the greenest home possible on an urban infill lot in Peterborough, and then to sell it on the open market to show that there is an appetite for “deep green” amongst home buyers.

The final phase of the project is now underway, with the house going on the market this week. Here is the Listing for 136-1/2 James Street.

The most interesting part of selling this home is how to put forward the unique value proposition we are attempting to make. Most home buyers look within a set price range for their new home, and do this with an implicit understanding that they will be assuming utility costs (heat, electricity, water) that are within a similar range to all other homes. This house radically alters that outlook: There are no utility costs and the home provides an income.

Energy production vs Use

Energy production vs Use

This means that the higher up front cost of buying a super-insulated and completely non-toxic home (LEED Platinum certified) has a very compelling overall financial picture. The solar income from the house averages about $3300 annually. The annual utility costs are around $1800 or $150/month (inclusive of heat, electricity and water, plus services charges and delivery fees). This means that for the remaining 18 years of the Micro-FIT contract, there is a $1500 annual income from the home after all utility costs have been covered!

Considering that an average home of a similar size in Peterborough will have total utilities bills in the $250-600/month range (from census data, 2011), this means that there will be an annual savings of $3,000-8,700 for this homeowner. Putting that extra money against the mortgage for the home can result in the mortgage being paid off 5-6 years earlier. And all that while enjoying a healthy and efficient home.

Mortgage calculator

Mortgage calculator

But can this case be made effectively in the current real estate market? There is no way to show this information in a quick and easy-to-digest form… the listing for the house shows the asking price, and a curious buyer would have to read the listing and inquire about more details in order to learn the whole story.

We hope that there are buyers out there who will be interested enough to find out the details. And we also hope that this helps to set a precedent for builders who want to make healthy houses that earn money and real estate agents who want to sell this kind of home!

If you’d like to help us set this precedent, please share this listing with your networks.

Touring Sustainable Homes

On October 3 and 4, two great organizations are teaming up to help get you inside some unique sustainable homes in Ontario!

The Ontario Sustainable Energy Association (OSEA) has its Doors Open event on October 3. On this tour, you can see a wide range of homes that employ a variety of renewable energy strategies, from solar electric and solar thermal to small scale wind and micro hydro.

The Ontario Natural Building Coalition (ONBC) has its Natural Building Tour on October 4. On this tour, you can see homes built with all kinds of natural materials, including straw bale, hempcrete, rammed earth, cob and compressed earth blocks.

The links above will take you to maps that show all of the homes involved in the tours. There will be no better opportunity to see and experience such a wide range of homes, and to learn all of the insights gained by the owners and builders as they created their projects.

What Makes a Building Product “Green”?

The Green Glut
The past 10 years have seen an explosion of building products being marketed to designers and builders as “green.” As the immense impacts buildings have on our planet’s ecosystem started to become clear to the mainstream building industry, marketing departments went crazy to identify just about every kind of product as being “green” in some way or another.



From my position as someone advising people on green building options, this “glut of green” causes a lot of confusion. If every product is green, what does it mean to really be green?

Real Green Criteria
In order for a product to meet Endeavour’s standard for green, it has to meet several criteria:

  • Must have low ecosystem impacts in the harvesting and production of the product. This includes considering both how and where the raw materials are extracted and handled, and what kinds of pollution/emissions happen during the production processes.
  • Must have low embodied energy and carbon footprint. This means understanding how much (and what kind) of energy is used to harvest and process the product and the size of the fuel and carbon footprint.
  • If applicable, the product must positively impact the long-term energy efficiency and/or performance of the building.
  • Should not use and definitely must not emit any dangerous chemicals or off gassing, during manufacturing, use in the home, or at end-of-life.
  • Must be durable, and have a reasonable end-of-life strategy (ie, where does it go when it’s taken out of the building).
  • Upcycled, recycled and re-purposed materials are preferable.
  • Local production is preferable to long-distance shipping.

Meeting Just One Criteria = Not Good Enough
Many building products are sold as “green” if they meet any one of those criteria. Unfortunately, the majority of building products sold as “green” fail (often miserably) when examined against all of these criteria. While the sales team will glowing focus on any glimmering of green in one category, rarely does anything with the green label come close to satisfying a full range of ecological criteria.

Living Products Expo

Living Products Expo

A Materials Revolution?
The dichotomy between products posing as green and those that are truly green was on display at the recent Living Products Expo, which I attended in Pittsburgh last week. Organized by the International Living Future Institute, the event was billed as “Inspiring a Materials Revolution.” And kudos to the organizers, because this really was the intention of the event.

What Makes Foam Green?
But at one point I found myself in a session that featured several product manufacturers presenting on their new green products. One was a rep from Johns Manville presenting a new polyisocyanurate foam insulation product that does not have added fire retardants (called Energy 3.E). Now this is an interesting achievement, since the flame retardants used in foam insulation are among some of the worst and most persistent chemicals in use on the planet, and up to 15-20% of flame retardant by weight is used in foams. The San Antonio Statement on Brominated and Chlorinated Flame Retardants should be enough to scare all of us away from using any products that use these flame retardants, so to have a foam insulation that eliminates them from its chemistry (without using questionable substitution) can be viewed as a major step, one worthy of the label “green.”

Johns Manville foamExcept that if we put even this insulation to the test of our criteria list, it still fails on many counts. The foam is still a petro-chemical product, and if we don’t like what the oil industry does to the planet (from exploration impacts to drilling sea beds or excavating tar sands to the vast amounts of energy consumed and carbon produced to spills and “toxic events”) then it’s hard to see any foam product as being green. Foam insulation has very high embodied energy and carbon output. It still uses questionable chemistry, has no end-of-life plan and is shipped long distances from a centralized factory. Energy 3.E might be “greener” than other foams, but I don’t think it can really be called green or sustainable. This despite the fact that the product has won all kinds of green awards and has been widely celebrated.

Ecovative mushroom foamReal Green Insulation
This point was driven home by the next presenter at the same session, this time from Ecovative Design. This company has developed “mushroom foam,” a material that is made from mycelium (mushroom roots) grown amongst agricultural waste fibers. Among its many uses, it can be made into an insulation product with very similar performance qualities as plastic foam. This material satisfies all of the stringent criteria we apply to products in our buildings, and it is naturally flame resistant (interestingly, it turns out that the phosphorus atom the Johns Manville scientists managed to insert into their foam occurs naturally in the mycelium). Unfortunately, Ecovative’s insulation products have not yet reached the mass market, while the foam product has. But the stark difference between the two is a perfect illustration of the difference between being “sort of green” and “really green.”Ecovative process

At the same conference, I gained a more in-depth understanding of two programs that are intended to help builders tell the difference between real green products and those that are just pretending to be green.

Cradle to Cradle products programCradle to Cradle Certification
The Cradle to Cradle Products Innovation Institute certifies products on a scale from “bronze” to “gold” based on their satisfaction of a wide-ranging set of criteria. The C2C Products Registry allows one to select a product category (such as Building Supply and Materials) and find products that have met their very high standards. I highly recommend this when searching for truly green products to use in buildings, though the overall number of products is still relatively small.

declare labelThe Declare Label
Declare is a labelling system introduced by the Int’l Living Future Institute. The Declare label is billed as “a nutrition label for the building industry.” It focuses largely on a transparent declaration of all the ingredients in a product, and where those individual components come from. The Living Building Challenge building certification program has a “red list” of chemicals that it does not allow to be in a building. This label is a means of finding out if a product contains a red list chemical, and what things it contains that may not be desirable even if it is not on the red list. Declare does not consider ecosystem impacts, carbon emissions or other elements of manufacturing, and so is not quite as comprehensive as Cradle To Cradle, but it is still a great development and a useful tool for builders looking at green in a deeper way.

Green Chemistry and Local & Natural
green chemistry principlesAs stated in the Living Product Expo’s desire to spark a “materials revolution,” there is a real move happening toward creating and using building systems that are truly better for the planet. John Warner, a founder of the “green chemistry movement” was a speaker at the Expo, and more and more material developers are starting to use the principles of green chemistry for the built environment. Having presented to the Expo about Endeavour’s methods for prefabricating straw bale wall panels, I found it interesting that the most promising sustainable building systems are relatively low-tech, use waste streams from other processes and are simple to replicate in smaller, regional “micro-factories.” Mushroom foam, straw bale walls, cellulose insulation and so many other effective, truly green materials don’t require major industrial apparatus. To a large degree, this is what makes them truly green. Keeping it simple, local and natural is often the best way to ensure it’s green!

Circle Organic Farm Tour

In 2013, Endeavour’s Sustainable New Construction program undertook the building of a large farm building for Circle Organic Farm in Millbrook, Ontario.

The building included a 1,500 square foot vegetable processing area on the main floor (built with straw bale construction) and another 1,500 square feet of living area for farm workers and a farm office on the second floor (built with double stud framing and cellulose insulation). Adjoining this building is a 2,000 square foot buried root cellar. This root cellar was recently featured in a Trent University study about low-energy root cellar systems.

The building is now in its second year of use as the hub of operations at the busy farm, and is settling into the landscape comfortably.


Product Review: Allback Linseed Stain Wax

linseed oil wax review

At Endeavour, we are kind of obsessed with finding good-quality, non-toxic finishes for common household surfaces. Many homes have a lot of wood surfaces, and it can be particularly difficult to find non-toxic finishes for wood.

Allback is a Swedish company that specializes in making organic linseed oil paint products. We’ve used numerous of their products, purchased in Canada from Solvent-Free Paint. For a recent shelving project, we decided to try the Allback Linseed Oil Wax.

This product contains organic linseed oil and natural beeswax mixed with a variety of different pigment colours. We chose the white colour, but there are about 8 colour options in this product line.

Application is very simple. The oil-wax is rubbed onto the surface of the wood, allowed to sit for at least 30 minutes, and then rubbed back with a lint-free cloth. In the end, we used a buffing pad on an electric polisher to do the rubbing back, as this also buffs the wax to a nice finish. That’s it! One coat, and the wood is well-protected, with a bit of wood grain showing through.

We were very happy with the quality of the finish, and within 24 hours water will bead on the surface and typical kitchen stains wipe off without leaving a mark.

The product comes in a 7 ounce jar for $15 (one jar did our entire project with some left over), or a 1 liter pail for $59.

This is a wood finish that we would highly recommend!

Why We Love Earthen Floors

earthen floor clay floor how-to

Take one step – especially with bare feet – on an earthen floor and chances are you will be sold on the idea. You will want an earthen floor of your own. And not only will you be making happy feet when you choose an earthen floor, you’ll be making one of the most radical-yet-simple sustainable building choices… one that could dramatically reduce the environmental impacts of the built environment in a meaningful way.

earthen floor workshop and how-to

Clay, sand, fiber… that’s it!

A true game-changer
With the construction industry touting just about every option as being “eco-friendly” these days, it can be hard to know what choices really do make a difference. Earthen floors are a truly eco-friendly option. Using just four basic, natural, chemical-free and abundant materials that are minimally processed on site, an earthen floor creates a durable, healthy finished floor with the lowest possible environmental impacts. Mix the right proportions of clay, sand, natural fibers and drying oils and you’ll have a floor that is as beautiful as it is planet-friendly. The embodied energy of a 3/4″ thick earthen floor is 0.16 MJ/square foot, a tiny fraction compared to 3 MJ/square foot for hardwood, linoleum and concrete flooring of the same thickness, and 10-25 MJ/square foot for tile.

Really, a dirt floor?
It is often difficult for anybody in the “developed” world to consider an earthen floor as part of a clean, modern home. But earthen floors can be the visual showpiece of a home. A well-made earthen floor is a thing of beauty, bringing a texture and visual impact that cannot be replicated with any other material. Natural clay colours or natural pigments offer a wide palette, and a variety of fiber options can be used to great effect. And then there are the oil finishes which can add a rich lustre and additional colour options.

Are hearten floors durable?
Earthen floors are not a common option, and therefore most people do not have experience with seeing an earthen floor wear over time. In fact, these floors have very similar wear characteristics as most other natural floor materials like wood, bamboo and linoleum. All of these floor types can have a long lifespan under typical use conditions, although all are susceptible to scratching and gouging if mistreated, and all will require occasional refinishing to protect and enhance the surface of the material. Earthen floors are no different, and are quite easy to repair and refinish should some damage occur. I witnessed the earthen floor at Arts Centre Hastings spend a night under water after a large cooler full of melted ice broke, and yet after mopping up the spill the floor was not affected at all!

Place them wisely in the building
Though durable, it is wise to place them appropriately. Entryways, especially those that will see a lot of salt from snowy boots, can stress an earthen floor. Areas which will see a lot of dragging of chairs and furniture may not be appropriate. But if the use of the floor is for interior foot traffic, they hold up very well.

How does it work?
The clay/sand/fiber mix of an earthen floor may not seem like an ideal combination in a heavy-wearing scenario like a floor. These elements combine to make a substrate that can be easily packed and levelled. A typical earthen floor mix is 1 part of clay, 4 parts of sand, and 1 part of finely chopped fiber. As clays and clay soils can have different properties, it is always good to experiment with new materials before pouring an entire floor. Once this mix has been poured and troweled level, it is allowed to dry. Then the real magic occurs: several coats (anywhere from 2-6) of natural oil finish is applied to the floor. The oil penetrates into the clay/sand mixture and hardens around it, creating a tight and water-resistant finish that is very durable. The process is similar to natural linoleum, where linseed oil is mixed with sawdust. As with linoleum, the result is surprisingly solid.

Where can an earthen floor be used?
Earthen floors can be laid over many typical floor bases, including concrete slabs and plywood sub-floors. As

earthen floor clay floor how-to

A living room with a wood stove is a great place for an earthen floor

long as the floor base is stable and doesn’t have excessive flex or deflection, then an earthen floor can be laid. Typical thickness for a finished earthen floor is 3/4″, though it is possible to make them thicker. The floors can be laid over hydronic heating tubes, or used under wood stoves or other sources of heat. Simple substrate preparations are used if the base is either very smooth and shiny or if it is water absorbent.

It’s easy to learn to make an earthen floor
The steps involved in mixing, laying and finishing an earthen floor are very straightforward. If you think an earthen floor might be in your future, you can check out our upcoming earthen floor workshop, where you’ll get a chance to mix, pour, level and finish a complete earthen floor.

Getting Rid of Radon

Radon remediation

Those of you who follow Endeavour’s work will know that we take indoor environment quality very seriously. Every material that comes into one of our buildings is carefully vetted for its chemical content, and all of our finishes are chosen to be non-toxic. We pride ourselves on making buildings that have the best possible indoor air and water quality for the occupants. This is an aspect of sustainable building that is all too often forgotten, or given minor consideration via the use of low-VOC paints or other small steps.

Radon concentrations in Southern Ontario

We have long been aware of the issue of radon gas; the presence of radon gas is an important consideration when trying to create excellent indoor environment quality. Health Canada says: “Radon is a colorless, odorless and tasteless gas formed by the natural breakdown of uranium in soil, rocks and water. It seeps from the ground, and small amounts of radon are always present in the air. If radon gas enters a closed space like a home, it can build to higher concentrations. Radon is radioactive, and potentially carcinogenic if enough of the gas builds up. It is estimated that radon exposure is responsible for about 10 per cent of lung cancer cases in Canada, second only to smoking. Health Canada estimates that 1,900 Canadians died in 2006 from lung cancer resulting from radon exposure.”

Radon measurement table

Table from

When building our Canada’s Greenest Home project, we certainly considered the issue of radon, but after consulting some radon concentration maps and the Peterborough City-County Health Unit’s radon measurements in area homes, we didn’t think that radon would be an issue for this home. Especially considering the heavy duty vapour barrier and careful air sealing we knew we’d be doing, we thought the risk was extremely low.

However, a radon test of the basement – an integral part of getting our LEED Platinum certification – showed that we had very high levels. A long term (3-month) test gave results of 485 Bq/m3 (Becquerel per cubic metre), well above the Canadian acceptable limit of 200 Bq/m3, which itself is above the World Health Organization‘s recommended limit of 100 Bq/m3.

Despite the dangers of long-term exposure to radon gas, it is not so difficult to remedy a high reading, especially in a well-built home with a good basement.

We bought a testing device ($150) and an extraction fan ($250) from Radon Detect. The testing device can give short term (48 hour) and long term readings of radon levels. When we first plugged it in, we had readings in the 370 Bq/m3 range.

The process for lowering the radon level is to drill a hole in the basement slab to extend a 4-inch pipe down into the gravel below. This pipe is then directed out of the building through the basement wall to exhaust outside. We chose to use a fan mounted outdoors, but there are indoor options as well.

Our readings on the meter dropped by over 100 Bq/m3 to 223 Bq/m3 by just installing the 4-inch pipe, prior to hooking the fan up to the power source! Within 48 hours of turning on the fan, the meter was reading just 5 Bq/m3, well below any level of concern.

What is of concern, however, is that all the available information indicated to us that the Peterborough area is considered quite safe from radon, with the Health Unit reporting that only 8% of homes tested higher than 200 Bq/m3. However, the operator of Radon Detect told us that every home he’s ever seen tested in Peterborough has been higher than that, and certainly our readings were very high. Since radon comes from radioactive decomposition of rock and soil, this would indicated that at least our closest neighbours likely have high radon levels, and that high levels may exist in many more homes than we were led to believe. We were double the already-high allowable limit from Health Canada. At least now we own the testing equipment to help others see if they have high levels of radon.



Teachers’ Union Office Building slideshow

Straw bale passive house office building

In 2014, Endeavour’s Sustainable New Construction program built a new office building for the Trillium Lakelands Elementary Teachers’ Local in Lindsay, Ontario. The goal was to combine Passive House energy efficiency with low-impact, local and non-toxic materials.

The photo gallery below shows the entire build from start to finish. Click on a photo to view the slide show in full size:

Root Cellar Reports

Earthbag root cellar at Trent University built by The Endeavour Centre

In 2012, Endeavour helped to build a subterranean earthbag root cellar for the The Seasoned Spoon Cafe at Trent University. It was a fascinating project for which we could find very little in the way of research or documentation on which to base our design and systems. Now, after operating for three winters, this root cellar has been the focus of a research project by Martine Cleary through the Trent Community Research Centre.

Martine produced two documents from her research:

The results of her work are very interesting, and will change the way we approach root cellar design in the future.

Earth Coupling Strategy
Our approach with the Seasoned Spoon root cellar was to try to have the base subterranean soil temperature be the determining influence on the root cellar temperature. The cellar was designed to be entirely earth bermed, with the walls buried in soil and the roof covered with a minimum of 2ft of soil. To keep the cellar from getting too cold, we insulated the roof area as we were concerned that outdoor temperature might cool the cellar down too much. The ventilation tubes for the cellar were run around the perimeter of the footings before we backfilled, providing 60-70 feet of “earth-tube” for each of the two intake pipes, and this was also done to ensure that freezing winter air was tempered so as to not lower the cellar temperature.

Need More Cold Air Influence
As it turns out, the base soil temperature is warmer than the cellar would be, ideally, and that we actually could have used the sub-zero air temperatures to bring the root cellar into its ideal temperature range of 1-4C. With that in mind, we would strongly consider leaving a portion of the cellar unburied and exposed to the winter air. And we would definitely have the fresh air intakes come directly from outside and into the cellar, which would help to bring the temperatures down in a controlled manner.

Buried quonset hut root cellar by Endeavour Centre

The completed root cellar lies under a blanket of snow, which helps to insulate the structure

At the Circle Organic Farm root cellar, we had concerns that the exposed end of the buried quonset hut that forms the cellar would make the cellar too cold in the winter. But from Martine’s report, it looks like that cellar stays much closer to the optimum temperature because of the influence of low outdoor temperatures.

Root Cellaring Definitely Viable
We were happy to see in the report that the potatoes and carrots studied in Martine’s paper did well (often better than the samples that were refrigerated!), and that a growing number of farms are looking to modernize this low-tech and low-energy means of winter food storage. We’ll be excited the next time such a project comes our way!

All About Natural Paint

Non-toxic paints

There is no easier or better place to shift away from toxic petrochemicals and move to using natural, non-toxic options than with the paint we put on our walls.

Anybody Can (and Should) Do This
We hear from many people who wish they could build a home with natural materials, but because they live in an existing home they seem to feel there is no way for them to use natural materials. But using natural paints is something that anybody can do, at any time, in any home, and on any wall surface. And the benefits are profound. In terms of your family’s health, it can be better to have a non-natural home painted with natural finishes than to have a natural home painted with toxic petrochemicals. Natural paints are also better for the planet.

Why Not Just Use No-VOC Paint?
By all appearances, the paint industry seems to be getting “greener.” So why not just choose a good no-VOC paint and use that? Turns out, there are quite a few reasons. Firstly, paints labelled as “Low-VOC” or “No-VOC” are far from being non-toxic. Secondly, the petrochemical paint industry has a huge environmental and carbon footprint.

The Dirty Secret About No-VOC Paintdisturbing paint facts
The impetus to reduce the quantities of volatile organic compounds (VOCs) from paints actually had nothing to do with human health concerns. VOC reductions were imposed on the paint industry because they contributed to smog, and only those VOCs that directly contribute to low-level ozone production are covered by these regulations. The US Environmental Protection Agency (EPA), the body that first imposed VOC restrictions, has this to say after testing a range of paints that qualify as low-VOC and finding surprisingly high concentrations of VOCs:

“EPA Reference Method 24 is probably not an adequate method for measuring the VOC content of low-VOC latex paints. …Current bulk analysis and emission test results showed that the VOC contents of low-VOC latex paints are well within the uncertainty range of Method 24, and the method is apparently not precise enough to accurately define the VOC content of those paints.” –Inside IAQ EPA/600/N-98/003

What If It’s Labelled as “Green”
There are some labelling programs that do ensure acrylic (commonly called “latex”) paints are less harmful to occupants. However, the most common labels do not. GreenGuard and Ecologo are the labels most commonly seen in paint stores. They are administered by Underwriters’ Laboratories (UL). Here’s what that standard has to say about its commitment to human health:

“1.14 While this practice lists specific chemicals and associated maximum allowable concentrations, as required by criteria indoor air procedures and specifications, it does not assess the human risk involved with use of the materials either as an installer and/or as an end user.” –UL 2821

green seal logoIf you want to trust a label, find paints certified by GreenSeal GS-11. This is the only standard I can find that actually excludes a wide range of toxic chemicals and has a direct concern for human health.

And Even If It’s Got a Good Green Label…

Despite the fact that they are called “water-based,” all acrylic paints are made from petrochemicals. Coatings consumption worldwide reached 80 billion pounds and $120 billion in value in 2013, according to “Global Paint & Coatings, 2013-2018,” by polymer and chemical market researchers Kusumgar, Nerlfi & Growney. That means that our use of petrochemical paint carries with it the same environmental impacts as any use of crude oil. Don’t like offshore drilling, oil sands, pipelines, greenhouse gas emissions, oil spills, etc? Every time we use acrylic paint, we contribute to all those impacts.

From raw material harvesting through production and end-of-life waste, the 80

From raw material harvesting through production and end-of-life waste, the 80 billion pounds of paints produced annually have a massive impact on the environment.

The embodied energy and embodied carbon emissions of acrylic paint are also very high. Using data from the Inventory of Carbon and Energy V2.0, the paint needed to coat the interior of a typical 2,000 square foot home (primer and two coats of finish) would use about 7,300 megajoules (MJ) of energy to produce, and emit 303 kg of carbon dioxides (or equivalents). That’s the energy in 1.5 barrels of crude oil or 61 gallons of gasoline required to paint every home, and somewhere in the neighbourhood of the same weight in CO2 emissions as the combined weights of the home’s inhabitants!

Now the Good News!
Don’t want to inhale toxic chemicals or contribute to oil spills and climate change? The good news is that there are plenty of accessible, affordable and practical paint options available that are non-toxic and low-impact. Most of the paint manufacturers listed here provide full disclosure of their ingredient lists, meaning that there are no hidden toxins. All have been recommended by people with chemical sensitivities.

Natural paints come in a number of different categories, based on the type of binder they use, and each type of paint has a range of different surfaces it may be used on:

Natural Oil Paints

  • Drying oils (linseed, sunflower, tung, etc) polymerize when exposed to air
  • Some natural oil paints are emulsified with water
  • Indoor & outdoor use
  • Used on almost any substrate

Although many people will have an initial negative reaction to the idea of “oil paints,” these bad associations are from very toxic petrochemical oil paints. Natural oil paints are a whole different breed. The emulsified oil paints are the most straightforward natural paints to use, and give results that are consistent with modern petrochemical paints. Washable, durable and tinted to any available colours, these paints can be used to replace conventional acrylic and alkyd paints with no change to expectations about application, coverage and durability. All the brands we’ve used are non-toxic and fully bio-degradable. Most can be obtained in just about any imaginable tint.

Auro Wall Paint, available in Canada from Tockay
Allback Linseed Oil Paint available in Canada from Living Rooms
AFM Safecoat Naturals available in Canada from Living Rooms
Kreidezeit Wall Paint, available in Canada from Tockay

Lime Paints

  • Calcium carbonate binder, often with additional natural binders
  • Indoor use (outdoor use for lime washes)
  • Most wall substrates, surface prep may be req’d

Lime paints have been used for thousands of years, and the modern versions are excellent products that can be used on most wall surfaces. Naturally anti-septic, these paints come in a variety of textures from quite smooth to quite grainy. They add a depth and beauty that is hard to explain but is immediately obvious upon seeing them. They are durable and do not wash away with water. They are an excellent choice for any wall that receives light to heavy contact, and are available in a wide range of colours.

Kreidezeit Lime Paint, available in Canada from Tockay
Auro Lime Paint, available in Canada from Tockay

Clay Paints

Non-toxic paints

Kreidezeit clay paint can be brushed or rolled onto wall surfaces primed with a casein primer

  • Natural clay binder, often with additional natural binders
  • Indoor use only
  • Most wall substrates, surface prep may be req’d

Clay paints are the champions of low-impact and low-toxicity. The fact that they are gorgeous to look at is an additional bonus! A variety of grain sizes and tints are available. They are durable (no dusting, will not brush off the wall) but are not washable. They can handle some direct wetting, but will wash off with scrubbing or constant abrasion. Good for use on any wall that does not receive direct wetting or a lot of touching/contact.

Kreidezeit Clay Paint, available in Canada from Tockay

Casein Paints

  • Milk or vegetable casein binder, often with additional natural binders
  • Indoor use only
  • Most wall substrates, wood

Casein paints can be made from vegetable or milk casein. Similar to the clay paints, they are capable of dealing with some wetting and abrasion, but shouldn’t be used in places where this will happen consistently. A wide variety of tints are available. They can be used on walls, and also on raw wood.

Homestead House Milk Paint, available from Homestead House
Kreidezeit Vegetable Casein Paint, available from Tockay

Mineral Paints

Non-toxic paint

Eco-House silicate dispersion paint can be used on interior and exterior mineral surfaces

  • Potassium or sodium silicate (“waterglass”)
  • Indoor & outdoor use
  • Mineral substrates only (plaster, brick, concrete, etc)

Silicate dispersion paints are unique in that they don’t coat a surface, they mineralize onto the mineral surface and become an integral part of the surface. This makes them extremely durable. We use them a lot as a finish for exterior plasters, where they have the Goretex-like effect of protecting walls from bulk water penetration, but maintain the permeability of the plaster. They can be used indoors or outdoors on any surface that is mineral-based, including clay & lime plasters, concrete, brick, stucco and stone. They come in a wide range of colours, and colour matching is available.

Eco-House Silicate Dispersion Paint, available in Canada from Perma-Tint

Non-toxic Clean-up
One of the unsung benefits of using any of these paints is that they are all biodegradable. Even the “cleanest” conventional paints have a petrochemical base that ends up in waterways or in soil during cleanup, with an aggregate of thousands of gallons entering the ecosystem annually. Natural paints clean easily and the wash water can safely go into septic systems or onto the ground.

So Many Viable Options
All of the paints listed here are products that we have used with excellent results. Each type of paint has specific uses and surfaces, meaning there is no surface in or on a home that cannot be treated with a natural paint. Costs tend to be slightly higher than mid-range conventional paints, and in line with higher-end conventional options. None of these paints are unaffordable, and the slight extra cost is a small price to pay to be surrounded by non-toxic surfaces that are not off-gassing into your home, and did not have a deep impact on the environment. A worthy investment for any home!

Want to Try These Paints?
Endeavour’s Eco-Paints workshop is a day long opportunity to learn all about natural paints, and to actually use all of the paints mentioned above.